Service-Oriented Programming

Course Module 2

Version 1.1
March 2, 2014

Xumin Liu, Rajendra Raj
Computer Science
RIT
[xl, rkr]@cs.rit.edu

Tom Reichlmayr
Software Engineering
RIT
tjr@se.rit.edu

Chunmei Liu
Systems & Computer Science
Howard University
chunmei@scs.howard.edu

Alex Pantaleev
Computer Science
SUNY at Oswego
alex@cs.oswego.edu

This material is based upon work supported by the National Science Foundation under Awards DUE-1140567, DUE-1141112, and DUE-1141200. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
1. Overview

This course module is the second of three modules being developed to teach Service-Oriented Programming (SOP) to undergraduate students in computing. Course modules are well-defined, self-contained units of instruction that may be incorporated, either as-is or with minor modifications, within one or more courses offered in diverse disciplines. This modular approach also allows for easy vertical integration of SOP into the undergraduate curriculum in introductory, mid-level and senior courses in disciplines such as Computer Science and Software Engineering.

This course module targets a mid-level course in the undergraduate curriculum for Computer Science or Software Engineering. A typical course offered that introduces students to several programming languages and programming paradigms such as imperative, functional or logic at this level. This course is usually a required course and has names such as Principles of Programming Languages, Programming Language Concepts or Programming Paradigms. The lecture materials provide an overview of service-oriented architecture, the fundamental principles of SOP and web services. The focus is on setting up the background for SOP and the whole notion of SOP as a programming paradigm for software reuse, a closer look at XML’s usage in SOP, and an introduction to basic issues in distributed systems.

Prerequisite knowledge. This course module is typically meant for students who have had extensive exposure to programming in object-oriented languages such as Java, C#, Objective-C or C++, and are now ready to learn different programming paradigms.

Module Learning Outcomes. Students completing this course module will be able to:

• Describe the role and importance of service-oriented programming in current application development.
• Explain the basic concepts of web services and service-oriented architecture.
• Explain the standards underlying service-oriented architecture and web services
• Build, publish and use web services using C# or Java.
• Explain how software reuse and quality are improved by the use of web services’ composition.

2. Rationale

The global service-oriented middleware market will grow to at least $8.2 billion by 2016, according to a WinterGreen Report. It is crucial that undergraduate Computer Science (CS) and Software Engineering (SE) students learn about these developments in web services and service-oriented computing as these concepts and technologies will dominate software development for the next few years. The students need repeated exposure to the same concepts at different degrees of depth, and this mid-level course module introduces or re-introduces students to SOP.

3. **Recommended use**

The authors have typically targeted this module to a course such as Principles of Programming Languages, but the module may also be used in any course where the students have the prerequisite knowledge of object-oriented programming. Other courses that may be appropriate include a course in Networking or in Software Engineering.

4. **Lecture Slides**

The lecture slides for this module are also included in this folder. The instructor may use them as-is or incorporate them into his or her materials.

5. **Sample questions**

The sample questions for this module, also included in this folder, are meant for low stakes quizzes. The instructor may use them as-is or incorporate them into his or her tests.

6. **Labs/programming assignments**

A sample lab assignment is provided in this folder to permit students gain hands-on experience in making use of existing web services in their programming.

7. **FAQ**

This section will be populated after the authors have gained further experience with the use of these modules in actual courses.

8. **Readings**

These readings are primarily for faculty teaching these courses; a subset of the material may also be handed out to students as appropriate.

9. **Links**

These links are primarily for faculty teaching these courses; a subset of the material may also be handed out to students as appropriate.

3. http://www.w3schools.com/webservices/

10. **Module Evaluation**

This section will include assessment tools to measure student learning and module
effectiveness. In addition to direct student assessment using quizzes, assignments and tests, module evaluation requires student self-assessment and instructor self-assessment of the materials. The latter assessment materials will be provided to instructors who are early adopters of this course module.